Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.

Identifieur interne : 002515 ( Main/Exploration ); précédent : 002514; suivant : 002516

Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.

Auteurs : Paul Abraham [États-Unis] ; Richard J. Giannone ; Rachel M. Adams ; Udaya Kalluri ; Gerald A. Tuskan ; Robert L. Hettich

Source :

RBID : pubmed:23073815

Descripteurs français

English descriptors

Abstract

High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.

DOI: 10.1074/mcp.M112.022996
PubMed: 23073815
PubMed Central: PMC3536892


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.</title>
<author>
<name sortKey="Abraham, Paul" sort="Abraham, Paul" uniqKey="Abraham P" first="Paul" last="Abraham">Paul Abraham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830</wicri:regionArea>
<wicri:noRegion>Tennessee 37830</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
</author>
<author>
<name sortKey="Adams, Rachel M" sort="Adams, Rachel M" uniqKey="Adams R" first="Rachel M" last="Adams">Rachel M. Adams</name>
</author>
<author>
<name sortKey="Kalluri, Udaya" sort="Kalluri, Udaya" uniqKey="Kalluri U" first="Udaya" last="Kalluri">Udaya Kalluri</name>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23073815</idno>
<idno type="pmid">23073815</idno>
<idno type="doi">10.1074/mcp.M112.022996</idno>
<idno type="pmc">PMC3536892</idno>
<idno type="wicri:Area/Main/Corpus">002847</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002847</idno>
<idno type="wicri:Area/Main/Curation">002847</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002847</idno>
<idno type="wicri:Area/Main/Exploration">002847</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.</title>
<author>
<name sortKey="Abraham, Paul" sort="Abraham, Paul" uniqKey="Abraham P" first="Paul" last="Abraham">Paul Abraham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830</wicri:regionArea>
<wicri:noRegion>Tennessee 37830</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
</author>
<author>
<name sortKey="Adams, Rachel M" sort="Adams, Rachel M" uniqKey="Adams R" first="Rachel M" last="Adams">Rachel M. Adams</name>
</author>
<author>
<name sortKey="Kalluri, Udaya" sort="Kalluri, Udaya" uniqKey="Kalluri U" first="Udaya" last="Kalluri">Udaya Kalluri</name>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
</author>
<author>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
</author>
</analytic>
<series>
<title level="j">Molecular & cellular proteomics : MCP</title>
<idno type="eISSN">1535-9484</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (analysis)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Proteome (analysis)</term>
<term>Tandem Mass Spectrometry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (analyse)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (analyse)</term>
<term>Spectrométrie de masse en tandem (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines végétales</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Protein Processing, Post-Translational</term>
<term>Tandem Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Spectrométrie de masse en tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23073815</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular & cellular proteomics : MCP</Title>
<ISOAbbreviation>Mol Cell Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>106-19</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/mcp.M112.022996</ELocationID>
<Abstract>
<AbstractText>High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abraham</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giannone</LastName>
<ForeName>Richard J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Rachel M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kalluri</LastName>
<ForeName>Udaya</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hettich</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Proteomics</MedlineTA>
<NlmUniqueID>101125647</NlmUniqueID>
<ISSNLinking>1535-9476</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23073815</ArticleId>
<ArticleId IdType="pii">M112.022996</ArticleId>
<ArticleId IdType="doi">10.1074/mcp.M112.022996</ArticleId>
<ArticleId IdType="pmc">PMC3536892</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteome Res. 2012 Jan 1;11(1):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22003893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):480-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sep Sci. 2008 Jun;31(11):2032-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 1997 Dec;8(3):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9417891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4706-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Dec 2;10(12):5302-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):795-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Jan;28(1):551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Apr 15;391(1-2):209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):591-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 Sep-Oct;3(5):1002-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2000 Apr;21(6):1104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10786884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1996 Mar 1;68(5):850-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8779443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Nov;30(11):1415-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Aug;10(8):M110.003699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21586754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e22942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21826220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Jul;12(1):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9263459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Feb;5(2):450-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15627959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2004 Jun;3(6):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Mar;11(3):M111.013722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22021278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 27;103(3):367-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Jul;6(7):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15957003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Jun;9(3):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16580871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6509-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):938-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Jun 1;11(6):3390-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Apr;119(4):1407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2009 Sep 15;81(18):7757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19689114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W412-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2002 Jan-Feb;1(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12643522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7805-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Mar;19(3):242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11231557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2004 Jul 15;76(14):4193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Sep;5(9):2339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16944946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Sep 1;75(17):4646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14632076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Dec 1;258(2):794-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9874249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Nov;11(11):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20944666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Oct;4(10):1419-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Mar;63(6):2243-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22407647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 Jun 4;9(6):2863-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Nov;9(21):4871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19743414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(11):2717-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):321-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Adams, Rachel M" sort="Adams, Rachel M" uniqKey="Adams R" first="Rachel M" last="Adams">Rachel M. Adams</name>
<name sortKey="Giannone, Richard J" sort="Giannone, Richard J" uniqKey="Giannone R" first="Richard J" last="Giannone">Richard J. Giannone</name>
<name sortKey="Hettich, Robert L" sort="Hettich, Robert L" uniqKey="Hettich R" first="Robert L" last="Hettich">Robert L. Hettich</name>
<name sortKey="Kalluri, Udaya" sort="Kalluri, Udaya" uniqKey="Kalluri U" first="Udaya" last="Kalluri">Udaya Kalluri</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Abraham, Paul" sort="Abraham, Paul" uniqKey="Abraham P" first="Paul" last="Abraham">Paul Abraham</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002515 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002515 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23073815
   |texte=   Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23073815" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020